
UNIT-II

Software Requirement Specification (SRS)

Software Requirement Specification (SRS) Format as the name suggests, is a complete

specification and description of requirements of the software that need to be fulfilled

for the successful development of the software system. These requirements can be

functional as well as non-functional depending upon the type of requirement. The

interaction between different customers and contractors is done because it is

necessary to fully understand the needs of customers.

Depending upon information gathered after interaction, SRS is developed which

describes requirements of software that may include changes and modifications that

is needed to be done to increase quality of product and to satisfy customer’s demand.

o Purpose of this Document – At first, main aim of why this document is necessary

and what’s purpose of document is explained and described.

o Scope of this document – In this, overall working and main objective of

document and what value it will provide to customer is described and explained.

It also includes a description of development cost and time required.

o Overview – In this, description of product is explained. It’s simply summary or

overall review of product.

General description

In this, general functions of product which includes objective of user, a user

characteristic, features, benefits, about why its importance is mentioned. It also

describes features of user community.

1. Functional Requirements

In this, possible outcome of software system which includes effects due to operation

of program is fully explained. All functional requirements which may include

calculations, data processing, etc. are placed in a ranked order. Functional

requirements specify the expected behaviour of the system-which outputs should be

produced from the given inputs. They describe the relationship between the input and

output of the system. For each functional requirement, detailed description all the data

inputs and their source, the units of measure, and the range of valid inputs must be

specified.

2. Interface Requirements

In this, software interfaces which mean how software program communicates with

each other or users either in form of any language, code, or message are fully

described or explained. Examples can be shared memory, data streams, etc.

3. Performance Requirements

In this, how a software system performs desired functions under specific condition is

explained. It also explains required time, required memory, maximum error rate, etc.

The performance requirements part of an SRS specifies the performance constraints

on the software system. All the requirements relating to the performance

characteristics of the system must be clearly specified. There are two types of

performance requirements: static and dynamic. Static requirements are those that do

not impose constraint on the execution characteristics of the system. Dynamic

requirements specify constraints on the execution behaviour of the system.

4. Design Constraints

In this, constraints which simply mean limitation or restriction are specified and

explained for design team. Examples may include use of a particular algorithm,

hardware and software limitations, etc. There are a number of factors in the client’s

environment that may restrict the choices of a designer leading to design constraints

such factors include standards that must be followed resource limits, operating

environment, reliability and security requirements and policies that may have an

impact on the design of the system. An SRS should identify and specify all such

constraints.

5. Non-Functional Attributes

In this, non-functional attributes are explained that are required by software system

for better performance. An example may include Security, Portability, Reliability,

Reusability, Application compatibility, Data integrity, Scalability capacity, etc.

6. Preliminary Schedule and Budget

In this, initial version and budget of project plan are explained which include overall

time duration required and overall cost required for development of project.

Uses of SRS document

• Development team require it for developing product according to the need.

• Test plans are generated by testing group based on the describe external

behaviour.

• Maintenance and support staff need it to understand what the software product

is supposed to do.

• Project manager base their plans and estimates of schedule, effort and

resources on it.

• customer rely on it to know that product they can expect.

• As a contract between developer and customer.

• in documentation purpose.

❖ use case scenario

A use case scenario describes how a user might interact with a system to achieve a

goal. It’s typically used in software development as part of the

functional requirements document/plan, but use case scenarios aren’t just for

developers.

Let’s take a closer look at what a use case is and how it can help you.

use case

Explaining how a user will interact with a system is a must if you’re going to a) get

buy-in from stakeholders and b) create something the user wants to use.

Like a user story, a use case describes how a user will interact with a system to

achieve a goal but on a slightly more granular level. It’s typically written as a

sequence of steps, each representing a different action the user takes.

For example, let’s say you’re designing a new e-commerce website. A use case for

this project might be something like this:

• A user goes to the website and browses through the product catalog.

• The user adds a product to their shopping cart.

• The user checks out and pays for the product.

• The system sends a confirmation email to the user.

As you can see, a use case is still quite high-level and isn’t meant to be a detailed

design document.

create a use case

Use cases are a great way to start a project because they help you understand the

user’s needs and how the system will fit into the user flow. By creating a use case,

you can:

• Gather requirements from users.

• Define the scope of a project.

https://nulab.com/learn/project-management/everything-you-need-to-know-about-product-requirements/
https://nulab.com/learn/project-management/user-stories-write/
https://nulab.com/learn/design-and-ux/step-step-guide-creating-first-user-flow-diagram/

• Create a roadmap for development.

Everyone from project managers to developers can use them to understand better

how a project works and what needs to happen behind the scenes to make it all run

smoothly. You can also use them to create a shared understanding of the project

among stakeholders.

write a use case

Writing a use case scenario is relatively simple. You just need to answer three

questions:

1. Who is going to use the product?

2. What are they going to use it for?

3. How are they going to do it?

Let’s say you’re designing a new software application. Your first step is to identify the

user. In this case, it’s someone who wants to book a hotel room.

Next, you need to understand what they want to do with the product. In this case,

the user wants to find a hotel room that meets their needs and book it.

Finally, you need to explain how the user will achieve their goal. In this case, they’ll

use the software to search and book.

include in a use case scenario

The use case can be detailed or basic, depending on the intended audience and

system. Either way, the document should establish and identify a few key

components:

• System: a system is a collection of hardware, software, and people that work

together to achieve a specific goal. In this case, the system is the software

application you’re designing.

• Actor: an actor is someone who interacts with the system. In this case, the

actor is the user who wants to book a hotel room.

• Goal: a goal is something that the actor wants to achieve by interacting with

the system. In this case, the goal is to find and book a hotel room.

• Preconditions: preconditions are conditions you need to meet to complete the

use case. In our current example, the precondition is the user’s need for

lodging.

• Postconditions: postconditions are conditions that need to be met after

completing the use case. In our example, the postcondition is the user

confirming a hotel reservation.

• Extensions: extensions are alternative sequences of events that can happen

during the use case. In this example, an extension might be something like the

user leaving the site before booking or inquiring about the room.

• Use case: the use case outlines the success and failure scenarios that can

happen when the actor interacts with the system. During this section, you’ll

establish the main success scenario (MSS) and alternative paths that explain

what happens in the event of a failure.

create a use case scenario

Creating a use case scenario is a four-step process:

1. Identify the actors.

2. Describe the use case.

3. Outline the success and failure scenarios.

4. Diagram the use case scenario.

Let’s go through each of these steps in more detail.

1. Identify the actors

The first step is to identify the different actors that will be interacting with the system.

An actor is anyone or anything that interacts with the system. For example, for an e-

commerce site, the actors will be the customers. You can make this as granular as

you like, such as customers who use TikTok or men in the state of California.

2. Describe the use case

The next step is to describe the use case. This description should be a high-level

overview of what the use case is and what it involves.

For example, the description for the customer adding a product to their shopping

cart might be: “the customer browses the product catalog and adds a product to

their shopping cart.”

Look at things from the user’s perspective to keep your system customer-focused. A

typical format to follow might look like this:

• As a <type of user or role>, I want <goal> so that <reason>.

3. Outline the success and failure scenarios

Once you’ve described the use case, you’ll need to outline the success and failure

scenarios. A success scenario is a sequence of events that results in the successful

completion of a use case. A failure scenario is a sequence of events that prevent the

use case from completing successfully.

For example, the success scenario for the customer adding a product to their

shopping cart might run as follows:

• The customer browses the product catalog and finds the product they want to

buy.

• The customer adds the product to their shopping cart.

• The customer checks out and pays for the product.

• The customer service team ships the product to the customer’s address.

• The customer receives the product.

On the other hand, a failure scenario might run like this:

• The customer browses the product catalog and doesn’t find the product they

want to buy.

• The customer abandons the cart and leaves the website.

Or

• The customer adds a product to their shopping cart.

• The customer checks out and pays for the product.

• The customer decides they don’t want the product before it ships.

• The customer service team cancels the order.

As you can see, some failure scenarios are out of your hands. However, your website

or app must be prepared to handle all eventualities.

4. Diagram the use case scenario

The last step is to diagram the use case scenario. This will help you visualize the

different steps involved in the scenario and see how the actors interact with each

other.

You can do this in a few different ways:

• Drawing sketches by hand

• Using the shapes and lines in word processing or slideshow software

• Using a diagramming tool, like Cacoo (the best option, in our opinion)

Why is diagramming software the best option? You can grab ready-made templates

and drag-and-drop shapes to build your diagram. You can also share the use case

scenario with the rest of the team in real-time and collaborate in the same file. Not

to mention, your entire team can add comments and attach files from one

convenient hub.

❖ Object oriented Analysis and Design

Object-oriented analysis and design (OOAD) is a technical approach for analyzing

and designing an application, system, or business by applying object-oriented

programming, as well as using visual modelling throughout the software

development process to guide stakeholder communication and product quality.

 OOAD in modern software engineering is typically conducted in an iterative and

incremental way.

The outputs of OOAD activities are analysis models (for OOA) and design models (for

OOD) respectively.

Object-Oriented Analysis(OOA):

https://nulab.com/cacoo/

➢ The purpose of any analysis activity in the software life-cycle is to create a

model of the system's functional requirements that is independent of

implementation constraints.

➢ The main difference between object-oriented analysis and other forms of

analysis is that by the object-oriented approach we organize requirements

around objects, which integrate both behaviors (processes) and states (data)

modeled after real world objects that the system interacts with.

➢ In other or traditional analysis methodologies, the two aspects: processes and

data are considered separately. For example, data may be modelled by ER

diagrams, and behaviors by flow charts or structure charts.

➢ Common models used in OOA are use cases and object models. Use cases

describe scenarios for standard domain functions that the system must

accomplish.

➢ Object models describe the names, class relations (e.g. Circle is a subclass of

Shape), operations, and properties of the main objects. User-interface

mockups or prototypes can also be created to help understanding.

 Object-Oriented Design(OOD):

➢ During object-oriented design (OOD), a developer applies implementation

constraints to the conceptual model produced in object-oriented analysis.

➢ Such constraints could include the hardware and software platforms, the

performance requirements, persistent storage and transaction, usability of the

system, and limitations imposed by budgets and time.

➢ Concepts in the analysis model which is technology independent, are mapped

onto implementing classes and interfaces resulting in a model of the solution

domain, i.e., a detailed description of how the system is to be built on

concrete technologies.

➢ Important topics during OOD also include the design of software architectures

by applying architectural patterns and design patterns with the object-

oriented design principles.

Benefits of Object-Oriented Analysis and Design(OOAD)

• It increases the modularity and maintainability of software by encouraging the

creation of tiny, reusable parts that can be combined to create more complex

systems.

• It provides a high-level, abstract representation of a software system, making

understanding and maintenance easier.

• It promotes object-oriented design principles and the reuse of objects, which

lowers the amount of code that must be produced and raises the quality of

the program.

• Software engineers can use the same language and method that OOAD

provides to communicate and work together more successfully in groups.

• It can assist developers in creating scalable software systems that can adapt to

changing user needs and business demands over time.

Challenges of Object-Oriented Analysis and Design(OOAD)

• Because objects and their interactions need to be carefully explained and

handled, it might complicate a software system.

• Because objects must be instantiated, managed, and interacted with, this may

result in additional overhead and reduce the software’s speed.

• For beginner software engineers, OOAD might have a challenging learning

curve since it requires a solid grasp of OOP principles and methods.

• It can be a time-consuming process that involves significant upfront planning

and documentation. This can lead to longer development times and higher

costs.

• OOAD can be more expensive than other software engineering

methodologies due to the upfront planning and documentation required.

Real world applications of Object-Oriented Analysis and Design(OOAD)

Some examples of OOAD’s practical uses are listed below:

• Banking Software: In banking systems, OOAD is frequently used to simulate

complex financial transactions, structures, and customer interactions.

Designing adaptable and reliable financial apps is made easier by OOAD’s

modular and scalable architecture.

• Electronic Health Record (EHR) Systems: Patient data, medical records, and

healthcare workflows are all modeled using OOAD. Modular and flexible

healthcare apps that may change to meet emerging requirements can be

made through object-oriented principles.

• Flight Control Systems: OOAD is crucial in designing flight control systems for

aircraft. It helps model the interactions between different components such as

navigation systems, sensors, and control surfaces, ensuring safety and

reliability.

• Telecom Billing Systems: In the telecom sector, OOAD is used to model and

build billing systems. It enables the modular and scalable modeling of

complex subscription plans, invoicing rules, and client data.

• Online Shopping Platforms: E-commerce system development frequently

makes use of OOAD. Product catalogs, user profiles, shopping carts, and

payment procedures are all modeled, which facilitates platform maintenance

and functionality expansion.

https://www.geeksforgeeks.org/object-oriented-programingoop-concepts-for-designing-sytems/

❖ Design Patterns in Software Engineering

A Software Design Pattern is a general, reusable solution to a commonly occurring

problem within a given context in software design.

Efficient and effective problem-solving is critical in software development. Design

patterns are tried-and-true remedies for common problems that arise during the

development process. These patterns provide best practices, ideas, and methods that

programmers can use to create scalable, reliable, and maintainable software systems.

Types of Design Patterns in Software Engineering

Design patterns vary in complexity, level of detail, and scale of applicability to the

entire system being designed. Let us take the analogy to road construction: you can

make an intersection safer by either installing some traffic lights or building a whole

multi-level interchange with underground passages for pedestrians.

As per the book 'Design Patterns - Elements of Reusable Object-Oriented Software,'

there are 23 design patterns that can be classified into three categories: Creational,

Structural, and Behavioral. Let us look at each one of them in detail.

Creational Patterns

These patterns provide various object creation mechanisms, which increase flexibility

and reuse of existing code.

These design patterns are all about instantiating classes or creating objects. These

patterns are further divided into two types: class-creational patterns and object-

creational patterns. While class-creation patterns effectively employ inheritance in

the instantiation process, object-creation patterns effectively use delegation. The

Factory Method, Abstract Factory, Builder, Singleton, Object Pool, and Prototype are

examples of creational design patterns.

Structural Patterns

• These patterns provide various object creation mechanisms, which increase

flexibility and reuse of existing code.

• These design patterns are concerned with grouping various classes and

objects into larger structures that give new functionality. Adapter, Bridge,

Composite, Decorator, Facade, Flyweight, Private Class Data, and Proxy are

some examples of structural design patterns.

Behavioral Patterns

• Behavioral patterns are concerned with algorithms and the assignment of

responsibilities between objects.

• These design patterns are about recognizing and realizing common

communication patterns between objects. Chain of duty, Command,

Interpreter, Iterator, Mediator, Memento, Null Object, Observer, State,

Strategy, Template method, and Visitor are examples of behavioral patterns.

Advantages of Design Patterns

1. Reusable in Multiple Projects

Developers can use design patterns to apply solutions to common issues in a

reusable fashion across different projects.

2. Define System Architecture

They provide a lucid and well-organized architecture by offering blueprints for

specifying the composition and relationships within a system.

3. Capture Software Engineering Experiences

Software engineers' combined expertise and experience are embodied in design

patterns, which provide tried-and-true answers to common design problems.

4. Transparency in Design

The architectural and design choices become more apparent and understandable to

other developers when they adhere to recognized design patterns.

5. Well-Proven Solutions

Over time, design patterns have undergone extensive testing and refinement,

yielding dependable solutions supported by industry knowledge.

6. Enhance System Flexibility

By separating components and encouraging modular design, they increase flexibility

and facilitate system expansion and adaptation.

7. Promote Maintainability

Through the promotion of best practices like loose coupling, encapsulation, and

separation of concerns, design patterns help write more maintainable code.

8. Facilitate Better System Design

Design patterns address typical design issues and trade-offs, guiding developers

towards better system designs even while they do not provide perfect answers.

❖ Unified Modeling Language (UML)

UML, short for Unified Modeling Language, is a standardized modeling language

consisting of an integrated set of diagrams, developed to help system and software

developers for specifying, visualizing, constructing, and documenting the artifacts of

software systems, as well as for business modeling and other non-software systems.

The UML represents a collection of best engineering practices that have proven

successful in the modeling of large and complex systems. The UML is a very

important part of developing object oriented software and the software

development process. The UML uses mostly graphical notations to express the

design of software projects. Using the UML helps project teams communicate,

explore potential designs, and validate the architectural design of the software. In

this article, we will give you detailed ideas about what is UML, the history of UML and

a description of each UML diagram type, along with UML examples.

Structure diagrams show the static structure of the system and its parts on different

abstraction and implementation levels and how they are related to each other. The

elements in a structure diagram represent the meaningful concepts of a system, and

may include abstract, real world and implementation concepts, there are seven types

of structure diagram as follows:

• Class Diagram

• Component Diagram

• Deployment Diagram

• Object Diagram

• Package Diagram

• Composite Structure Diagram

• Profile Diagram

http://www.omg.org/spec/UML/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#class-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#component-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#deployment-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#object-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#package-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#composite-structure-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#profile-diagram

Behavior diagrams show the dynamic behavior of the objects in a system, which can

be described as a series of changes to the system over time, there are seven types of

behavior diagrams as follows:

• Use Case Diagram

• Activity Diagram

• State Machine Diagram

• Sequence Diagram

• Communication Diagram

• Interaction Overview Diagram

• Timing Diagram

❖ Class Diagram

The class diagram is a central modeling technique that runs through nearly all

object-oriented methods. This diagram describes the types of objects in the system

and various kinds of static relationships which exist between them.

Relationships

There are three principal kinds of relationships which are important:

1. Association - represent relationships between instances of types (a person

works for a company, a company has a number of offices.

2. Inheritance - the most obvious addition to ER diagrams for use in OO. It has

an immediate correspondence to inheritance in OO design.

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#use-case-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#activity-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#state-machine-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#sequence-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#communication-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#interaction-overview-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/#timing-diagram

3. Aggregation - Aggregation, a form of object composition in object-oriented

design.

Class Diagram Example

❖ Object Diagram

An object diagram is a graph of instances, including objects and data values. A static

object diagram is an instance of a class diagram; it shows a snapshot of the detailed

state of a system at a point in time. The difference is that a class diagram represents

an abstract model consisting of classes and their relationships. However, an object

diagram represents an instance at a particular moment, which is concrete in nature.

The use of object diagrams is fairly limited, namely to show examples of data

structure.

Class Diagram vs Object Diagram - An Example

Some people may find it difficult to understand the difference between a UML Class

Diagram and a UML Object Diagram as they both comprise of named "rectangle

blocks", with attributes in them, and with linkages in between, which make the two

UML diagrams look similar. Some people may even think they are the same because

in the UML tool they use both the notations for Class Diagram and Object Diagram

are put inside the same diagram editor - Class Diagram.

But in fact, Class Diagram and Object Diagram represent two different aspects of a

code base. In this article, we will provide you with some ideas about these two UML

diagrams, what they are, what are their differences and when to use each of them.

Relationship between Class Diagram and Object Diagram

You create "classes" when you are programming. For example, in an online banking

system you may create classes like 'User', 'Account', 'Transaction', etc. In a classroom

management system you may create classes like 'Teacher', 'Student', 'Assignment',

etc. In each class, there are attributes and operations that represent the characteristic

and behavior of the class. Class Diagram is a UML diagram where you can visualize

those classes, along with their attributes, operations and the inter-relationship.

UML Object Diagram shows how object instances in your system are interacting with

each other at a particular state. It also represents the data values of those objects at

that state. In other words, a UML Object Diagram can be seen as a representation of

how classes (drawn in UML Class Diagram) are utilized at a particular state.

If you are not a fan of those definition stuff, take a look at the following UML

diagram examples. I believe that you will understand their differences in seconds.

Class Diagram Example

The following Class Diagram example represents two classes - User and Attachment.

A user can upload multiple attachment so the two classes are connected with an

association, with 0..* as multiplicity on the Attachment side.

Object Diagram Example

The following Object Diagram example shows you how the object instances of User

and Attachment class "look like" at the moment Peter (i.e. the user) is trying to

upload two attachments. So there are two Instance Specification for the two

attachment objects to be uploaded.

❖ Use Case Diagram

A use-case model describes a system's functional requirements in terms of use cases.

It is a model of the system's intended functionality (use cases) and its environment

(actors). Use cases enable you to relate what you need from a system to how the

system delivers on those needs.

Think of a use-case model as a menu, much like the menu you'd find in a restaurant.

By looking at the menu, you know what's available to you, the individual dishes as

well as their prices. You also know what kind of cuisine the restaurant serves: Italian,

Mexican, Chinese, and so on. By looking at the menu, you get an overall impression

of the dining experience that awaits you in that restaurant. The menu, in effect,

"models" the restaurant's behavior.

Because it is a very powerful planning instrument, the use-case model is generally

used in all phases of the development cycle by all team members.

Use Case Diagram Example

❖ Activity Diagram

Activity diagrams are graphical representations of workflows of stepwise activities

and actions with support for choice, iteration and concurrency. It describes the flow

of control of the target system, such as the exploring complex business rules and

operations, describing the use case also the business process. In the Unified

Modeling Language, activity diagrams are intended to model both computational

and organizational processes (i.e. workflows).

Activity Diagram Example

❖ State Machine Diagram

A state machine is any device that stores the status of an object at a given time and

can change status or cause other actions based on the input it receives. States refer

to the different combinations of information that an object can hold, not how the

object behaves. In order to understand the different states of an object, you might

want to visualize all of the possible states and show how an object gets to each state,

and you can do so with a UML state diagram.

Each state diagram typically begins with a dark circle that indicates the initial state

and ends with a bordered circle that denotes the final state. However, despite having

clear start and end points, state diagrams are not necessarily the best tool for

capturing an overall progression of events. Rather, they illustrate specific kinds of

behavior—in particular, shifts from one state to another.

A state diagram is a type of diagram used in UML to describe the behavior of

systems which is based on the concept of state diagrams by David Harel. State

diagrams depict the permitted states and transitions as well as the events that effect

these transitions. It helps to visualize the entire lifecycle of objects and thus help to

provide a better understanding of state-based systems.

State Machine Diagram Example

❖ Sequence Diagram

A sequence diagram is a type of interaction diagram because it describes how—and

in what order—a group of objects works together. These diagrams are used by

software developers and business professionals to understand requirements for a

new system or to document an existing process. Sequence diagrams are sometimes

known as event diagrams or event scenarios.

The Sequence Diagram models the collaboration of objects based on a time

sequence. It shows how the objects interact with others in a particular scenario of a

use case. With the advanced visual modeling capability, you can create complex

sequence diagram in few clicks. Besides, some modeling tool such as Visual

Paradigm can generate sequence diagram from the flow of events which you have

defined in the use case description.

Sequence Diagram Example

Sequence diagram for ATM systems

An ATM allows patrons to access their bank accounts through a completely

automated process. You can examine the steps of this process in a manageable way

by drawing or viewing a sequence diagram. The example below outlines the

sequential order of the interactions in the ATM system.

